

REPORT

District of Summerland

Thirsk Dam Inspection Spillway Piezometer Data Review

August 2016

ASSOCIATED ENGINEERING	
QUALITY MANAGEMENT SIGN-OF	F
Signature	
Date AUG 18 2016	

CONFIDENTIALITY AND © COPYRIGHT

4

This document is for the sole use of the addressee and Associated Engineering (B.C.) Ltd. The document contains proprietary and confidential information that shall not be reproduced in any manner or disclosed to or discussed with any other parties without the express written permission of Associated Engineering (B.C.) Ltd. Information in this document is to be considered the intellectual property of Associated Engineering (B.C.) Ltd. In accordance with Canadian copyright law.

This report was prepared by Associated Engineering (B.C.) Ltd. for the account of District of Summerland. The material in it reflects Associated Engineering (B.C.) Ltd.'s best judgement, in the light of the information available to it, at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Associated Engineering (B.C.) Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

REPORT

SECTION

Table of Contents

Table of Contents 1 Background 2 Inspection of the Spillway 3 **Stability of the Calculation** 3.1 Spillway Hydrostatic Uplift 3.2 Spillway Stability Assessment 4 Conclusions 5 Recommendation **Certification Page** Appendix A – Spillway Photos Appendix B – Site Inspection Notes

Appendix C - Calculations	1
Appendix D - Golder Report and Background Data	1

PAGE NO.

i

1

1

2

2

4

5

5

1

1

1

1 Background

The Thirsk Arch Dam and Spillway was originally constructed by the District of Summerland in 1940/41. In 2006 the dam was raised and the spillway replaced to provide additional storage capacity. Today, the Thirsk Dam consists of three separate structures: a concrete spillway 14m high by 125m long, a 26m high concrete arch dam with low level outlet, and an earth-filled saddle dam.

The spillway is divided into 18 blocks; with each block designed to be individually stable. The highest blocks, #12 to #16 include an inspection gallery, along with a grout curtain and drains meant to reduce the hydrostatic uplift on the base of the dam. Two of the blocks, #12 & #14, each include four piezometers to help monitor the hydrostatic uplift on the underside of the base.

The piezometer data was recorded by District of Summerland staff between 2008 and 2014. The data was forwarded to Golder Associates Ltd.'s office in Kelowna for review. In their Technical Memorandum dated December 15, 2014 (Appendix D), Golder noted anomalies in the data, and recommended that Associated Engineering review the readings and determine the implications of the new hydrostatic uplift data on spillway stability.

The District of Summerland retained Associated Engineering in March, 2016 to inspect the spillway and review the piezometer data. The inspection was carried out during the 2016 freshet to ensure the lake level was near maximum during the inspection.

2 Inspection of the Spillway

Associated Engineering conducted a visual inspection of the spillway gallery on April 11, 2016, with the assistance of District staff and Dean Environmental out of Penticton, B.C. The inspection gallery was classified as a confined space according to WorkSafeBC regulations, and Dean Environmental were retained to provide safe access. The resulting safety plan included a site risk analysis, confined space procedures, forced ventilation, air quality monitoring and safety procedures.

The inspection date was planned carefully to coincide with the lake level being at or near spill elevation. Lake water levels were monitored by District staff in the weeks prior. The lake level during the inspection was approximately 100 to 200 mm below the spillway crest (See photos in Appendix A and inspection notes in Appendix B).

Observations from a visual inspection of the downstream face of the spillway and the spillway gallery were noted. The spillway was found to be generally in good condition with no specific concerns identified. The gallery drains all appeared to be operational with a very small flow rates measured at 2.4 litres/minute.

A few hairline cracks with efflorescence and minor weeping were observed in the upstream face of the gallery, however none showed any measureable leakage. None of the cracks observed impact the stability

of the dam. The contraction joints were inspected between blocks and we measured the joint width as approximately 1.0 mm. This indicated that the joints are functioning as intended to relieve thermal and shrinkage stresses. The was no leakage observed in the contraction joints within the gallery, indicating that the water-stops between the blocks were functioning as designed.

The drains all appeared to be functioning, although it was noted that all had small amounts of sediment on the sides of the drain holes. We recommend cleaning them as part of a 5 year maintenance cycle.

3 Stability Calculations

3.1 SPILLWAY HYDROSTATIC UPLIFT

Blocks #12 to #18 (inclusive) were designed with upstream drains and a grout curtain to reduce the hydrostatic uplift on the base of the spillway. During construction, vibrating piezometers were installed below Blocks #12 and #14 to monitor the hydrostatic uplift. The maximum hydrostatic uplift forces measured by the piezometers, below Blocks #12 and #14, are plotted on Figures 3-1 & 3-2. The source of this data is the Golder Technical Memorandum found in Appendix D. The figures demonstrate both the design hydrostatic uplift and the maximum uplift forces for the condition with the lake level at the spillway crest (Elevation 1028.70). The uplift condition was also added to the figures, assuming that there are no drains, and that the uplift pressure is linear from the upstream face to the downstream face.

Based on this analysis, it was determined that:

- The hydrostatic uplift under Block #12 is significantly greater than the design uplift. In fact, it appears that the drains and grout curtain are ineffective under Block #12 at reducing the hydrostatic uplift.
- The hydrostatic uplift under Block #14, although slightly different in shape is about the same magnitude as the design uplift.

Increased hydrostatic uplift under the base of the blocks reduces the block stability. Therefore, we recalculated the stability of Block #12 based on the increased hydrostatic uplift.

3 - Stability Calculations

Figure 3-1 – Block 12 – Hydrostatic Uplift

Figure 3-2 – Block 14 – Hydrostatic Uplift

3.2 SPILLWAY STABILITY ASSESSMENT

The stability of Block 12 was evaluated assuming the drains as ineffective (or plugged) in accordance with the latest Canadian Dam Association (CDA) Dam Safety Guidelines (2007) for the hydrostatic ice, flood and earthquake loading cases. We used the applied loads from the original design, but calculated the performance factors based on the plugged drain condition. The plugged drain condition is a recent addition to the 2007 CDA Guidelines.

The performance factors are a measure of the safety of the dam. They vary depending on the load case, but are indicators of the safety of the structure The following table summarizes the critical load cases and performance factors for Block #12.

	Load Combinations								
Type of Analysis	Hydrostatic	lce	Probable Maximum Flood (PMF)	Earthquake	Post Earthquake				
Residual Sliding Factor (Note 4)	2.8 > 1.3	2.2 > 1.3	1.9 > 1.1	Note 3	2.7 > 1.1				
Position of Resultant Force	75% of base in compression	75% of base in compression	Within the base	Note 3	Within the base				

Table 3-1 Calculated and Acceptable Performance factors – Block #12 - Plugged Drains(PD)

Notes:

- 1. The dam was originally conservatively designed to be stable, under the usual hydrostatic condition, assuming the rock anchors are ineffective.
- 2. The dam was originally designed to be stable for ice, flood and earthquake conditions assuming that the rock anchors are effective.
- 3. Earthquake stability is evaluated for the post-earthquake condition, assuming the drains are ineffective.
- 4. Friction only, ignoring cohesion.

Although not indicated in the table above, our analysis indicates that Block #12 has inadequate stability for usual hydrostatic conditions, if the anchors are ineffective (as conservatively assumed in the original design). However, Block #12 performance factors are acceptable, with plugged drains, if the rock anchors are fully effective for all load conditions including usual hydrostatic.

The highest block, Block #14, has drains that are working effectively and the stability of this block meets the original design assumptions (i.e. it is stable for the usual hydrostatic condition with no anchors and the other load conditions with anchors).

Because we do not have piezometer's results for the hydrostatic uplift under Blocks # 13, #15, & #16, we also checked the stability of all of these blocks, assuming the drains are plugged. We calculated that all of the blocks meet the current CDA performance factors for the plugged drain condition, and are therefore stable if the anchors are effective for all conditions.

4 Conclusions

We conclude that the hydrostatic uplift indicated by the piezometers in Block 12 exceeds the original design uplift assumptions. The sliding and position of the resultant force was re-calculated, and we conclude that Block 12 is well within the acceptable performance factors. Our analysis relies on the rock anchors for stability under all load combinations, and that all other blocks within the spillway gallery sections are stable based on the current CDA recommended performance factors.

Based on our findings at this time, the Thirsk Spillway Dam is safe under all load combinations assuming the rock anchors are performing as designed.

5 Recommendation

We recommend the following:

- 1. The District conduct anchor lift-off tests to confirm that the rock anchors are performing as designed. These tests would be supervised and evaluated by a Dam Safety Engineer.
- 2. The District continue to monitor the piezometers and report any anomalies to a Dam Safety Engineer.
- 3. The District measure and record the flow of water from the drains annually; particularly when the lake level is at or near full service level. Report any significant changes in drainage flow to a Dam Safety Engineer.
- 4. The District clean out the drains in the inspection gallery at 5 year intervals.

REPORT

Certification Page

This report presents our findings regarding the District of Summerland Thirsk Dam Inspection Spillway Piezometer Data Review.

Respectfully submitted,

Prepared by:

Dal B H

Dale B. Harrison, P.Eng. Senior Structural Engineer

DBH/RM/lw

Reviewed by:

Roderick T. MacLean, P.Eng. Project Manager & Dam Safety Engineer

REPORT

Appendix A – Spillway Photos

Photo 1 Spillway – Viewed from the East

Photo 2 Spillway Gallery - Entrance

Photo 3 Spillway Gallery - Air Intake

Photo 4 Piezometer Monitoring Station – Spillway Left Abutment

Photo 5 Spillway Drain in Gallery

Photo 6 Block 12 – Weep on Upstream Face

Photo 7 Block 12-13 Contraction Joint

Appendix B – Site Inspection Notes

INSPECTION/SITE MEETING REPORT

OWNER:	District of Summerland		PROJECT NO .:	20162249.001	REPORT NO .:		
PROJECT:	Thirsk Dam Piez	Thirsk Dam Piezometer Inspection		20162249.001 A.01	SHEET:	1 OF 2	
COMPONENT:	Spillway		DATE:	June 7, 2016			
LOCATION:	Summerland, BC		ISSUE COPIES TO:				
ASSOCIATED ENGINEERING REP.: Dale Harrison, P. Eng.		PROJ. MGR.:	Rod MacLean, P.Eng.				
OTHERS PRES	ENT:		OWNER CONTACT:	District of Summerland – Devon Van der Meulen			
			CONTRACTOR:				
			OTHER:				

PROJECT REPORT Progress/Status/Conformance To Design/Workmanship/Comments/Recommendations

Item	Description	Depth Measurement from Base (m)
1	1.6 m from end – Leak – DS of trench	7.6
2	Negligible flow	7.6
3	Minor flow	7.6
4	Minor flow – Some sediment	5.8-6.8
5	Minor flow – Some sediment at 6.8 m	7.8+
6	Minor sediment	7.6+
7		7.8+
8	Water draining in – 3 inches low. Water drains through crack and disappears	7.8+
9	Working	7.8+
Drain		
10	6.5 Silt encountered	7.8+
11	Note yellow film in Photo	7.8+
Piezometers	1.1 m from 11 (Block 14)	
12	Clear water	7.8+
Block Joint	Blocks 14-15 – Grout flaking – Minor spalling from joint repair	
13	Clear water	7.8+
14	Minor resistance at 6.5 m	7.8+
15	Clear water	7.8+

P:\20162249\00_Thirsk_Dam_Ins\Advisory\08.05_Reports\ROM_Inspection_Report_.docx

- 2 -

Item	Description	Depth Measurement from Base (m)
Block Joint	Blocks 15-16 (slope rise starts)	
16	Appears to be plugged (sandy) – no flow	6.7
17	Not reported	
18		7.8+
19	Sand at 7.2 m – red slime in between – minor flow	7.2
20	Red slime	7.8 m
Joint 16-17	Good shape – Minor crack beside it (300 mm). Exposed rebar	
Joint 15-16	Effervescence on ceiling – Damp – Appears OK	
Block 15	Upstream Face – Mini crack - Staining	
Joint 14-15	OK – Effervescence – Minor crack near Piezometer – Minor crack in ceiling. Stain color (reddish)	
Joint 13-14	OK – Minor crack – B13 (every 10 ft)	
Block Joint 13	Good – 1.4m N, minor cracking, effervescence, staining	
Joint 12-13	Crack gauge used – 1.5-2mm crack – weeping. On curve up – crack End – Crack + condensation	
Drain	Drain Flow = 2.4 l/min	

Inspection completed at 2 pm. Spillway 150 mm from spilling. Splash noted.

Appendix C - Calculations

CONCRETE GRAV	/ITY DAM						
Project Summer	land- Thirsk	Spillway - Block	12 Case:	Existing	Spillway with Plugg	ged Drains	
ASSUMES	- Height of Bl	lock = 8.9 m + 1.5 m	base = 10.4 m above heel rotati	on point, ba	sed on DWG 303-R2 8	& 304-R2	
Note : Che	ck Usual, Ice	& PMF, Quake shou	Id not be any different!	•			
Ref.: Bureau of	Reclamation,	"Design of Small Da	ms,1986			Rev 2: revised height to work with foundation slope	
US Army (Corps of Engin	eers,				Rev. 3: revised method of calc slope effectiveness	
						New - Rev1- Added parapet (NEEDS CHECKING)	
CDA, "Dar	n Safety Guide	elines, 2007				Rev 4: July 21-16 - Added iteration for hydrostatic uplift for ICE & PMF	
INPUT GEOMETR	Ŷ		INPUT MATERIAL PROP	PERTIES		CALCULATED GEOMETRY	
Reservoir water depth	h_water_re	9 m	Density of Concrete	g_con	22.6 kN/m^3		
Normal tailwater depth	n_tail	1	Density of rock	g_rock	26 kN/m^3	Segment A B C D base Key Gallery Pa	arapet
Flood water depth	h_flood_ref	10.9 m	Density of Water	g_wat	9.81 kn/m^3	width w 0.7 6.2 9.5 0.0 9.5 2.0 1.5	0.7
Flood tailwater depth	h_tail	2	equiv. fluid pressure	silt	13.3 kn/m^3	height h 8.9 8.9 0.0 8.9 1.5 1.0 2.4	0
Height of dam	h_ref	<mark>8.9</mark> m	Friction rock/conc interface	fr_cr	1.00	area A 6.2 27.7 0.0 0.0 14.2 2.0 -3.6	0.0
Width at top of dam	w_top	0.7 m	Friction rock/rock interface	fr_rr	1		
Silt height from u/s base	h_silt	2 m	Residual cohesion rock/rock	c_rr	<u>500</u>		
Foundation slope	f_slope	0 fraction	Peak cohesion concrete/rock	c_cr	100 kPa	Width at top of base w_tbase 6.93 m	
depth of key	h_key	1 m	Residual cohesion conc/rock	coh_r	0 kPa	Height of water above heel h_water 10.5 m	
width of key	w_key	2 m	Concrete comp. strength	F'c	<mark>20</mark> МРа	Width at underside of base of dam w_bott 9.5 m	
Distance x to key	x_key	6 m	Rock bearing capacity		1000 kPa	Foundation slope height h_slope 0.00 m	
Slope of back face	s_down	0.70 H/V	Rock internal angle	phi	38 degree	Overall height @ upstream face h_dam 10.4 m	
Slope of upstream face	s_up	0.0 H/V	Rankine Passive coefficient, no o	coh K_p	4.2	Concrete volume V_conc 46.6 cm/m	
Distance to drain from h	eel x_drain	<mark>3.0</mark> m	shear key capacity/m depth	key	630 kn/m^2	Height of water above heel h_flood 12.4 m	
Heel projection	w_heel	<mark>1.0</mark> m	Dowels	D	0 kn/m	Base height @heel h_heel 1.5 m	
Base height @ toe	h_toe	<mark>1.5</mark> m	Anchor working load	Р	<mark>340</mark> kn/m		
Toe width	w_toe	1.55	Anchor dist. To upstream heel	anch_dist	0.5	Gallery Height h_gallery 2.4 m	
Parapet	h_parapet	0.0	Anchor slope	s_ancho	0 degree	Gallery Width w_gallery 1.5 m	
INPUT LOADING	DATA		Hydrodyanmic pressure Coeff	C_dyn	0.74	Gallery distance to heel x_gallery 2.5 m	
Hor. gnd. accel./gravity	pga	0.22				Gallery floor y_gallery 0.5 m	
Vert. gnd. accel./gravity	v	0.11	Drain Efficiency as decimal	E	0		
Horizontal ice force	ice	146 kn/m	Note: removed otm on key due to	o assumed fail	ure wedge, moment on u/s l	a base is local effect only Note: does silt act on front of base ????	

PERFORMANCE FACTORS

Note:sloping base friction is non-conservative-fix, includes all vertical forces on resistance side Note:check Jan 28/05 against Shane's spreadsheet for non-sloping base condition no vertical on quake

	Construction	Usual- with Anchors	Unusual (PD) - no anchor	lce - Unusal -PD	PMF Flood	Earthquake	Post-Earthquake
Peak Sliding		4.56 > 3	3.52 > 3	3.60 > 2	3.22 > 1.3	2.60 > 1.3	3.99 > 2
Residual Sliding		2.83 > 1.5	2.21 > 1.5	2.2 > 1.3	1.94 > 1.1	1.58 > 1.0	2.65 > 1.1
Eccentricty	1.65 < 2.37	-0.10 < 1.58	4.60 < 2.37	1.51 < 2.37	1.06 < 4.74	1.67 < 4.74	0.00
Bearing U/S	301 < 1000	103 < 1000	0 < 1000	4 < 1000	28 < 1000	-5 < 1000	87 < 1000
D/S	-7	91 < 1000	1011 < 1000	189 < 1000	143 < 1000	175 < 1300	86 < 1000

USUAL LOADING (NO ICE) - (DL + HYDROSTATIC+ SILT+ UPLIFT)-

Dead Load	V (kN)	x (m)	H (kn)	y (m)	M (kn-m)	
Segment A	141	8.1			1145	
Segment B	627	5.7			3573	
Segment C	0	6.3			0	
Segment D	0	8.5			0	
Gallery	-81	6.2			-507	
Key	26	2.5			63	
Base	321	4.74			1523	
Parapet	0	9.13			0	
Subtotal	1033	5.61			5798	
Key passive			630		0	
Resistance without anchors	1033	5.61	630		5798	
Anchor Load	340	8.98	0		3053	
Resistance with anchors	1373	6.45	630		8851	
Hydrostatic Lateral Rectangular surcharge			-10	5	-53	
Front clone	0	8 / 8	-331	5.5	-1039	
Heel of base	78	8 98			705	
Total	78	0.00	-541		-1187	
<u>Hydrostatic Uplift</u> Rectangular Lisstream Triangle to Drain	-93 -44	4.74 8 48	0	0.0	-441 -375	
Unstream Rectangle to Drain	-191	7 98	0 0	0.0	-1525	
D/S Triangle Drain to toe	-206	4.32	0 0	0.0	-892	
Total	-535	6.05	Ő	0.0	-3233	
Silt	2	9.48	-7	07	12	kN-m
Driving Forces	-455	kN	-548	kN 011	-4408	
Total, without anchors	578	2.4	-548		1390	
Total, with anchors	918		82		4443	
,						I

Hydrostatic Uplift (drains blocked)

Total, without anchors Total, with anchors	F	206 546		82 82		28 3081	
Driving Forces		-827 k	N	-548 k	N	-5770	k١
Silt		2	9.48	-7	0.7	12	k١
Total	-103	-908	5.06	0		-4595	
D/S Triangle Drain to toe		-69	0.99	0	0.0	-68	
Rectangular to Crack Depth	-93	-746	5.48	0	0.0	-4086	
Rectangular	-10	-93	4.74	0	0	-441	
	Uplift (kn)						

Safety Factors								
	No anchors	Anchors		Target				
Peak Sliding	3.52	4.56	>	3				
Residual Sliding	2.21	2.83	>	1.5				
Overturning	1.32	2.01						
Eccentrity	2.34	-0.10	<	1.58				
Stresses U/S	-29	103	<	0				
D/S	160	91	<	1000				
Compression area	0.76	1.00			kPa			
Stresses D/S(0 tension)	160		<	1000	kPa			
	No and	chors	Anc	hors	kPa			
	No dowels	dowels	No dowels	Dowels				
Residual Sliding Resistance	1208	1208	1548	1548				
Cohesion	721	721	948	948				
Peak Sliding Resistance	1929	1929	2496	2496				
Note: base slope included	n resistance							
		Drivina						

		Driving	
Resolve Orthogonal to sloping ba	Perp	Parallel	
No Anchors	578	548	548
Anchors	918	548	
reachus frome of	E70	1.06	

tan(phi+slope ane	578	1.06
resolve frame of	578	1.06

Upstream -103 Uplift Pressue

Drain

-74

Toe

-10

0-4-4-5

ICE LOADING - (DL + HYDROSTATIC+ SILT+ ICE+UPLIFT)-

Dead Load		V (kN)	x (m)	H (kn)	y (m)	M (kn-m)	
Segment A		141	8.1			1145	
Segment B		627	5.7			3573	
Segment C		0	6.3			0	
Segment D		0	8.5			0	
Gallery		-81	6.2			-507	
Key		26	2.5			63	
Base		321	4.74			1523	
Parapet		0	9.13			0	
Subtotal		1033	5.61			5798	
Key passive(residual)				630		0	
Anchor Load		340	8.98	0		3053	
Resistance with anchors		1373	6.45	630		8851	
Hydrostatic Lateral							
Rectangular surcharge				-10	5	-53	
Triangular				-531	3.5	-1839	
Front slope	0	0	8.48			0	
Heel		78	8.98			705	
Total		78		-541		-1187	
Hydrostatic Uplift	Uplift (kn)						
Rectangular	-93	-93	4.74	0	0	-441	
Upstream Triangle to Drain		-44	8.48	0	0.0	-375	
Upstream Rectangle to Drain		-191	7.98	0	0.0	-1525	
D/S Triangle Drain to toe		-206	4.32	0	0.0	-892	
Total	-93	-535	6.05	0		-3233	
Silt		2	9.48	-7	0.7	12 kN-m	
lce				-146	10.1	-1475	
Driving Forces		-455	kN	-694	kN	-5883 kN-m	
Total, with anchors		918		-64		2968	
Hydrostatic Uplift (drains blocke	ed)						
	Uplift (kn)						
Rectangular	-10	-93	4.74	0	0	-441	
Rectangular to Crack Depth	-93	0	9.48	0	0.0	0	
D/S Triangle Drain to toe		-442	6.32	0	0.0	-2792	
Total	-103	-535	6.05	0		-3233	
Silt		2	9.48	-7	0.7	12 kN-m	

Total, with anchors		918		-64		2968	
Driving Forces		-455 k	N	-694	٨N	-5883 kN-m	۱
lce	-			-146	10.1	-1475	
Silt		2	9.48	-7	0.7	12 kN-m	ſ
Total	-103	-535	6.05	0		-3233	
D/S Triangle Drain to toe		-442	6.32	0	0.0	-2792	
Rectangular to Crack Depth	-93	0	9.48	0	0.0	0	
Rectangular	-10	-93	4.74	0	0	-441	
_	Uplift (kn)						

Safety Factors

PMF- FLOOD LOADING (DL + HYDROSTATIC + SILT + FLOOD UPLIFT)

Dead Load	V (kN)	x (m)	H (kn)	y (m)	M (kn-m)	Safety Factors			
Segment A	141	8.1			1145		<u>Actual</u>		Target
Segment B	627	5.7			3573	Peak Sliding	3.22	>	2
Segment C	0	6.3			0	Residual Sliding	1.94	>	1.3
Segment D	0	8.5			0	Overturning	1.51		
Gallery	-81	6.2			-507	Eccentrity Overturning	1.06	<	1.58
Key	26	2.5			63	Stresses U/S	28	<	(
Base	321	4.74			1523	D/S	143	<	1000
Parapet	0	9.13			0				
Total	1033	5.61			5798	Compression area	1.00		
Anchors	340	8.98	0		3053		-		
Key passive			630	0.00	0				
Resistance with anchors	1373		630		8851				
							Anchors		_
Hydrostatic Lateral						Residual Sliding Resistance	1442		
Rectangular surcharge			-204	5.2	-1061	Cohesion	948		
Triangular			-531	3.5	-1839	Peak Sliding Resistance	2390		
Front slope	0	8.48			0				
Heel	107	8.98			960		Upstream	Drain	Toe
Total	107	8.98	-735		-1940	Uplift Pressue	-122	-89	-20
Hydrostatic Uplift							Crest	Heel	
Rectangular	-186	4.74	0	0.00	-882	Hydrostatic Pressure	20	122	1
Upstream Triangle to Drain	-48	8.48	0	0.0	-411				1
Upstream Rectangle to Drain	-209	7.98	0	0.0	-1670	1 1 1 1		1 1	
D/S Triangle Drain to toe	-226	4.32	0	0.0	-976	vH-			Y
Total	-670	5.88	Ō		-3938	YH1 Y'''		_	
Silt	2	9.48	-7	0.7	12		CINED.		
Driving Forces	-561	kN	-742	kN	-5866 kN-m	X			
Total Forces	812		-112		2985				

812		-112		2985
-561 k	Ν	-742	(N	-5866 kN-m
2	9.48	-7	0.7	12
-670	5.88	0		-3938
-484	6.32	0	0.0	-3056
0	9.48	0	0.0	0
-186	4.74	0	0.00	-882
	-186 0 -484 -670 2 -561 kl	-186 4.74 0 9.48 -484 6.32 -670 5.88 2 9.48 -561 kN 812	-186 4.74 0 0 9.48 0 -484 6.32 0 -670 5.88 0 2 9.48 -7 -561 kN -742 k 812 -112	-186 4.74 0 0.00 0 9.48 0 0.0 -484 6.32 0 0.0 -670 5.88 0 2 9.48 -7 0.7 -561 kN -742 kN 812 -112

Т

2 1.3 1.58 0 kPa 1000 kPa

Cracked- Anchors 1442 948 2390

Trial Crack Depth, T_tri_fld

YH1

CONCRETE GRAVITY DAM

INPUT GEOMETRY

Project Summerland- Thirsk Spillway - Block 14 Case: Existing Spillway with Working Drains

ASSUMES - Height of Block = 11.2 m + 1.5 m base = 12.7 m above heel rotation point, based on DWG 303-R2 & 304-R2

INPUT MATERIAL PROPERTIES

Ref.: Bureau of Reclamation, "Design of Small Dams, 1986 US Army Corps of Engineers,

CDA, "Dam Safety Guidelines, 2007

Rev 2: revised height to work with foundation slope Rev. 3: revised method of calc slope effectiveness New - Rev1- Added parapet (NEEDS CHECKING) Rev 4: July 21-16 - Added iteration for hydrostatic uplift for ICE & PMF

CALCULATED GEOMETRY

Reservoir water depth	h_water_re	11.3	m	Density of Concrete	g_con	22.6 kN/m^3								
Normal tailwater depth	n_tail	1		Density of rock	g_rock	26 kN/m^3	Segment	A	В	С	D	base	Key	Gallery
Flood water depth	h_flood_ref	12.1	m	Density of Water	g_wat	9.81 kn/m^3	width w	0.7	7.8	11.1	0.0	11.1	2.0	1.5
Flood tailwater depth	h_tail	2		equiv. fluid pressure	silt	13.3 kn/m^3	height h	11.	2 11.2	0.0	11.2	1.5	1.0	2.4
Height of dam	h_ref	11.2	m	Friction rock/conc interface	fr_cr	1.00	area A	7.8	3 43.9	0.0	0.0	16.6	2.0	-3.6
Width at top of dam	w_top	0.7	m	Friction rock/rock interface	fr_rr	1								
Silt height from u/s base	h_silt	2	m	Residual cohesion rock/rock	c_rr	500 <mark>.</mark>								
Foundation slope	f_slope	0	fraction	Peak cohesion concrete/rock	c_cr	100 kPa	Width at top of bas	е	w_tbase	8.54	m			
depth of key	h_key	1	m	Residual cohesion conc/rock	coh_r	<mark>0</mark> kPa	Height of water abo	ve heel	h_water	12.8	m			
width of key	w_key	2	m	Concrete comp. strength	F'c	20 MPa	Width at underside	of base of o	dam w_bott	11.1	m			
Distance x to key	x_key	6	m	Rock bearing capacity		1000 kPa	Foundation slope h	eight	h_slope	0.00	m			
Slope of back face	s_down	0.70	H/V	Rock internal angle	phi	38 degree	Overall height @ up	ostream fac	e h_dam	12.7	m			
Slope of upstream face	s_up	0.0	H/V	Rankine Passive coefficient, no co	oh K_p	4.2	Concrete volume		V_conc	66.8	cm/m			
Distance to drain from heel	x_drain	3.0	m	shear key capacity/m depth	key	630 kn/m^2	Height of water abo	ve heel	h_flood	13.6	m			
Heel projection	w_heel	1.0	m	Dowels	D	0 kn/m	Base height @heel		h_heel	1.5	m			
Base height @ toe	h_toe	1.5	m	Anchor working load	Р	340 kn/m								
Toe width	w_toe	1.55		Anchor dist. To upstream heel	anch_dist	0.5	Gallery Height	h_gall	ery 2.4	m				
Parapet	h_parapet	0.0		Anchor slope	s_ancho	0 degree	Gallery Width	w_gall	ery 1.5	m				
INPUT LOADING DA	ΤΑ			Hydrodyanmic pressure Coeff	C_dyn	0.74	Gallery distance to	heel x_galle	ery 2.5	m				
Hor. gnd. accel./gravity	pga	0.22					Gallery floor	y_galle	ery 0.5	m				
Vert. gnd. accel./gravity	v	0.11		Drain Efficiency as decimal	E	0.67								
Horizontal ice force	ice	146	kn/m	Note: removed otm on key due to	assumed fail	ure wedge, moment on u/s base	e is local effect only		Note: doe	es silt act or	n front of	base ????		

PERFORMANCE FACTORS

Note:sloping base friction is non-conservative-fix, includes all vertical forces on resistance side Note:check Jan 28/05 against Shane's spreadsheet for non-sloping base condition no vertical on quake

	Construction	Usual- with Anchors	Unusual (PD) - no anchor	Ice - Unusal -PD	PMF Flood	Earthquake	Post-Earthquake
Peak Sliding		3.99 > 3	3.57 > 3	2.97 > 2	3.46 > 1.3	2.22 > 1.3	3.12 > 2
Residual Sliding		2.62 > 1.5	2.20 > 1.5	1.8 > 1.3	2.24 > 1.1	1.47 > 1.0	2.06 > 1.1
Eccentricty	1.85 < 2.77	0.25 < 1.85	1.81 < 2.77	2.32 < 2.77	1.06 < 5.55	2.23 < 5.55	0.76
Bearing U/S	334 < 1000	116 < 1000	0 < 1000	28 < 1000	83 < 1000	-25 < 1000	55 < 1000
D/S	0	153 < 1000	206 < 1000	242 < 1000	171 < 1000	268 < 1300	132 < 1000

Parapet 0.7 0 0.0

USUAL LOADING (NO ICE) - (DL + HYDROSTATIC+ SILT+ UPLIFT)-

Dead Load	V (kN)	x (m)	H (kn)	y (m)	M (kn-m)	
Segment A	177	9.7			1726	
Segment B	992	6.8			6724	
Segment C	0	7.4			0	
Segment D	0	10.1			0	
Gallery	-81	7.8			-638	
Key	26	4.1			105	
Base	376	5.55			2085	
Parapet	0	10.74			0	
Subtotal	1490	6.71			10001	
Key passive			630		0	
Resistance without anchors	1490	6.71	630		10001	
Anchor Load	340	10.59	0		3601	
Resistance with anchors	1830	7.43	630		13602	
Hydrostatic Lateral				_		
Rectangular surcharge			-12	6	-79	
Triangular			-791	4.2	-3349	
Front slope	0	10.09			0	
Heel of base	101	10.59			1070	
Total	101		-804		-2358	
Hydrostatic Oplitt	100	E E E	0	0.0	602	
Rectangular	-109	5.55	0	0.0	-003	
Upstream Triangle to Drain	-132	10.09	0	0.0	-1330	
Upstream Rectangle to Drain	-04	9.59	0	0.0	-002	
D/S Triangle Drain to toe	-113	5.39	0	0.0	-000	
lotal	-437	7.05	0 7	0.7	-3343	
<u>Siit</u>	2	11.09	-/	0.7	CC	KIN-M
Univing Forces	-334	2.7	-811	KÍN	-308/	
Total, with anchors	1100	3.7	-811		4315	
rotal, with anchors	1495		-181		7915	

Hydrostatic Uplift (drains blocked)

-7692	1 kN	-811 kN -7
0.7 15	• 7 0.7	-7 0.7
-5349	0	0 -5
0.0 -4746	0 0.0	0 0.0 -4
0.0 0	0 0.0	0 0.0
0 -603	0 0	0 0
-	0	0

Safety Factors

	1	No anchors	Anchors		Target	
Peak Sliding		3.57	3.99	>	3	
Residual Sliding		2.20	2.62	>	1.5	
Overturning		1.76	2.39			
Eccentrity		1.81	0.25	<	1.85	
Stresses U/S		2	116	<	0	
D/S		206	153	<	1000	
Compression area		1.00	1.00			kPa
Stresses D/S(0 tension))	206		<	1000	kPa
						_
		No and	chors	Anc	hors	kPa
	1	No dowels	dowels	No dowel	s Dowels	
Residual Sliding Resistan	се	1785	1785	2125	2125	
Cohesion		1109	1109	1109	1109	
Peak Sliding Resistance		2894	2894	3234	3234	

Note: base slope included in resistance

		Driving
Resolve Orthogonal to sloping ba	Perp	Parallel
No Anchors	1155	811
Anchors	1495	811

100

resolve frame of I	1155	1.43
tan(phi+slope ang	1155	1.43

	Upstream	Drain	Toe
Uplift Pressue	-126	-38	-10

811

Page 2

ICE LOADING - (DL + HYDROSTATIC+ SILT+ ICE+UPLIFT)-

Dead Load		V (kN)	x (m)	H (kn)	y (m)	M (kn-m)	
Segment A		177	9.7			1726	
Segment B		992	6.8			6724	
Segment C		0	7.4			0	
Segment D		0	10.1			0	
Gallery		-81	7.8			-638	
Key		26	4.1			105	
Base		376	5.545			2085	
Parapet		0	10.74			0	
Subtotal		1490	6.71			10001	
Key passive(residual)				630		0	
Anchor Load	_	340	10.59	0		3601	
Resistance with anchors		1830	7.43	630		13602	
	-						
Hydrostatic Lateral							
Rectangular surcharge				-12	6	-79	
Triangular				-791	4.2	-3349	
Front slope	0	0	10.09			0	
Heel		101	10.59			1070	
Total		101		-804		-2358	
Hydrostatic Uplift	Uplift (kn)						
Rectangular	-109	-109	5.55	0	0	-603	
Upstream Triangle to Drain		-132	10.09	0	0.0	-1330	
Upstream Rectangle to Drain		-84	9.59	0	0.0	-802	
D/S Triangle Drain to toe		-113	5.39	0	0.0	-608	
Total	-109	-437	7.65	0		-3343	
Silt		2	11.09	-7	0.7	′ 15 kN-	-m
Ice				-146	12.4	-1810	
Driving Forces	Γ	-334	kN	-957	kN	-7497 kN-	-m
Total, with anchors	Ē	1495		-327		6105	
-	L						
Hydrostatic Uplift (drains blocked	I)						
	l Inlift (kn)						
1	Opint (kin)						
Rectangular	-10	-109	5.55	0	0	-603	

Total, with anchors		1105		-327		3568	
Driving Forces		-724	٨N	-957 I	٨N	-10034	kN-m
lce	_			-146	12.4	-1810	
Silt		2	11.09	-7	0.7	15	kN-m
Total	-126	-827	7.11	0		-5880	
D/S Triangle, Crack to Toe		-565	6.51	0	0.0	-3683	
Rectangular to Crack Depth	-116	-153	10.43	0	0.0	-1594	

Un-cracked
Anchors
2125
1109
3234

Uplift Pressue

3

0

kPa

Cracked Anchors 1735

1109

2844

1.5

0.0

PMF- FLOOD LOADING (DL + HYDROSTATIC + SILT + FLOOD UPLIFT)

Resistance with anchors	1830		630		13602	
Key passive			630	0.00	0	
Anchors	340	10.59	0		3601	
Total	1490	6.71			10001	Compression area
Parapet	0	10.74			0	
Base	376	5.545			2085	D/S
Key	26	4.1			105	Stresses U/S
Gallery	-81	7.8			-638	Eccentrity Overtur
Segment D	0	10.1			0	Overturning
Segment C	0	7.4			0	Residual Sliding
Segment B	992	6.8			6724	Peak Sliding
Segment A	177	9.7			1726	
Dead Load	V (kN)	x (m)	H (kn)	y (m)	M (kn-m)	Safety Factors

Total Forces	1410		-280		6912	
Driving Forces	-420	٨N	-910 k	٨N	-6689 k	N-m
Silt	2	11.09	-7	0.7	15	
Total	-540	7.22	0		-3900	
D/S Triangle Drain to toe	-111	5.39	0	0.0	-598	
Upstream Rectangle to Drain	-82	9.59	0	0.0	-788	
Upstream Triangle to Drain	-130	10.09	0	0.0	-1308	
Rectangular	-218	5.55	0	0.00	-1207	
Hydrostatic Uplift						
Total	119	10.59	-903		-2804	
Heel	119	10.59			1257	
Front slope	0	10.09			0	
Triangular			-791	4.2	-3349	
Rectangular surcharge			-112	6.4	-712	
Hydrostatic Lateral						

	<u>Actual</u>		Target
Peak Sliding	3.46	>	2
Residual Sliding	2.24	>	1.3
Overturning	2.03		
Eccentrity Overturning	0.64	<	1.85
Stresses U/S	83	<	0 kPa
D/S	171	<	1000 kPa
Compression area	1.00		

Hydrostatic Uplift(drains blocked-cracked) Rectangular	-218	5.55	0	0.00	-1207	Uplift Pressue	Upstream Toe -133 -20		Safety Factors	Actual		Target
Rectangular to Crack Depth	0	11.09	0	0.0	0	1	1 + + + + T	1 u	Peak Sliding	3.12	>	2
D/S Triangle Crack to toe	-631	7.39	0	0.0	-4665			Y 112	Residual Sliding	1.90	>	1.3
Total	-849	6.92	0		-5872	✓ H ₁			Overturning	1.57		
Silt	2	11.09	-7	0.7	15	· · · · ·			Eccentrity	1.06	<	5.55
Driving Forces	-728 k	N	-910 k	κN	-8661 kN-m				Stresses U/S	42	<	0 kPa
Total Forces	1101		-280		4941		T		D/S	172	<	1000 kPa
1						Sector States	X		Ratio Compression area to B	1.00		
						Trial Crack Depth, T	`_tri_fld 0.00 m ←	→	Crack Depth, T_flood	0.00	m]

Appendix D - Golder Report and Background Data

TECHNICAL MEMORANDUM

DATE December 15, 2014

FROM Gerald Imada, P.Eng.

REFERENCE No. 1418102-001-TM-Rev0

TO Shawn Hughes District of Summerland

EMAIL Gerald Imada@golder.com

REVIEW OF VIBRATING WIRE PIEZOMETER DATA, THIRSK DAM SPILLWAY

As requested by the District of Summerland (DOS), Golder Associates Ltd. (Golder) has reviewed the vibrating wire piezometer data provided by DOS through an e-mail dated November 19, 2014. This technical memorandum provides a summary of our review.

Background Information

- Vibrating wire piezometer data for Block 12 and Block 14 was collected by DOS for the period between May, 2009 and July, 2014.
- Review of the spreadsheet data indicates that the geodetic water elevations are calculated correctly using the vibrating wire readings.
- Piezometer readings are typically taken twice per year at about the time the reservoir has reached its full storage level of 1028.70 m.
- Full storage level is typically achieved during the late May to June period, except in 2011 and 2014 when the maximum reservoir levels were recorded in July.
- Four vibrating wire piezometers are located at each of the designated Blocks.
- Block 12 is located at the north end of the gallery section at the gallery entrance at Station 0+123 and where the relief drains terminate.
- Block 14 is located near the lowest section of the spillway at Station 0+147.
- **75** mm diameter drain holes are located at 3.0 m spacing along the entire length of the gallery centre line.
- Piezometer No. 1 is located near the upstream toe of the spillway structure, mid-way between grout curtain and drain at ground surface.
- Piezometer No. 2 is located downstream of the drain holes at a distance of 1.0 m and at ground surface.
- Piezometer No. 3 is located near the downstream toe.

Piezometer No. 4 is located about 2.0 m downstream of the drain holes and about 5.0 m below the rock/concrete interface.

Geotechnical Comments and Recommendations

- Phreatic surfaces were plotted for the following reservoir operating conditions:
 - 1) High reservoir level using the average of the highest annual readings (see attachment showing piezometer block sections).
 - 2) Low reservoir level using the average of the lowest annual readings (March 24, 2010 and March 18, 2014), (see attachment showing piezometer block sections).
- Based on the average of the highest annual readings between 2009 and 2014, the average near full reservoir storage level is at an elevation of about 1028.44 m. Under this condition, the phreatic surface across the spillway structure shows a consistent upward gradient between Piezometer No. 2 and 4. The upward gradient amounts to a head of about 1.84 m or at an equivalent pressure of 18.1 kPa at Block 12. At Block 14, the upward gradient increases to a head of about 2.63 m or at an equivalent pressure of 25.8 kPa.
- Under the lower reservoir storage level of about 1019.71 m, which is based on the average of only two readings taken on March 24, 2010 and March 18, 2018), the upward hydraulic gradient between Piezometer No. 2 and 4 is still present, but at a lower head of 0.75 m (7.4 kPa) at Block 12 and 0.93 m (9.1 kPa) at Block 14.
- Under the lower reservoir storage level condition, the phreatic surface is basically coincident with the gallery drain elevation.
- Under the high reservoir storage level condition, the phreatic surface at Piezometer No. 2 (Block 14), is also coincident with the gallery drain elevation.
- Under the high reservoir storage condition, the phreatic surface at Piezometer No. 2 (Block 12) is about 3.5 m higher than the gallery drain and about 5.0 m higher at Piezometer No. 4. This would suggest that significant seepage water would be flowing through the drain hole system beneath the gallery.
- Based on the difference in head between Piezometers No. 2 and 4 for both blocks, it is apparent that the 75 mm diameter drain holes are effective in lowering the phreatic surface, but that its effectiveness is limited to a distance of about 1.0 m. As the downstream distance increases away from the drain holes, the phreatic surface also increases, especially at Block 12.
- Considering that the drain holes terminate in the vicinity of Block 12, it is reasonable to expect a higher gradient as the drainage capacity beneath the spillway structure is reduced. It is also possible that the higher head at Block 12 is associated with a less effective grout curtain system because of fractured and less competent bedrock zone.
- It is recommended that this information be submitted to Associated Engineering for their structural review of the gallery with special consideration to the upward gradient at the time when the reservoir is operating at or near its full storage level.

We trust this provides you with the information that you require. Please do not hesitate to contact the undersigned at your earliest convenience if you require additional information.

Yours truly,

GOLDER ASSOCIATES LTD.

Junt

Roger Therrien, AScT Associate, Senior Geotechnical Technologist

Geráld Ímada, P.Eng. Principal, Senior Geotechnical Engineer

RT/GI/kv

Attachments: Average of 2 Lowest Water Level Readings Drawing (March 24, 2010 and March 18, 2014) Average of Highest Annual Readings Drawing (2009 to 2014)

n:\active\2014\1447\1418102 dos piezometer review summerland\07 deliverables\1418102-001-tm-rev0-vibrating wire piezometers-15dec_14.docx

Thirsk Spillway Dam, Summerland, BC Vibrating Wire Piezometer Monitoring **District of Summerland**

ENTER FIELD DATA BELOW

 B_c = Current barometric pressure (in kPa) Note:

 $L_{\rm c}$ = current reading from vibrating wire piezometer (in B units)

 $T_{\rm c}$ = current temperature reading from vibrating wire piezometer (in degrees Celsius)

Instructions : 1) Enter Date measurements were taken in <u>Column A.</u> 2) Enter Geodetic Reservoir Level (in m) at time measurements were taken in <u>Column B.</u> 3) Enter Barometric Pressure (in kPa) at time measurements were taken in <u>Column C.</u>

- Barometric pressure information can be found on the Environment Canada Weather

Search website for Summerland: (http://www.weatheroffice.gc.ca/city/pages/bc-54_metric_e.html). • If you require historical information, click on 'Historical Weather' → Climate Data Online → for Summerland for the appropriate date. 4) Enter all vibrating wire piezometer data within the labelled columns (<u>Columns D through S</u>). 5) Go to 'RESULTS' tab.

	er 4	T _c (°C)	5.5	5.5	5.5	6.1	5.6	5.6	5.5	5.4	5.4	5.9	5.8	6.1	5.4	
	Piezomet	(B units)	8292.2	8239.2	8209.6	8346.6	8158.4	8337.0	8169.8	8235.2	8163.5	8202.5	8166.4	8329.9	8167.0	
	r 3	° (°C) L _c	3.5	3.7	4.0	3.5	4.8	3.3	6.8	3.2	3.3	3.5	3.5	3.0	5.2	
14	Piezomete	(B units) T	8916.3	8904.6	8902.8	8918.7	8877.0	8918.8	8888.6	8904.5	8877.5	8906.0	8882.4	8917.4	8873.3	
Block '	2	(°C) L _c	4.3	4.4	4.5	4.6	5.0	4.4	5.9	3.9	3.9	4.4	4.3	4.3	5.0	
	ometer	its) T _c	9.	5	e.		4	8.	4	ci.	cu:	Ŀ.	00	0.	5	
	Piez	L _c (B un	8829	8815	8815	8830	8812	8830	8803	8819	8817	8842	8836	8848	8833	
	er 1	T _c (°C)	4.7	4.8	4.9	4.4	5.3	4.4	6.6	3.7	3.8	4.6	4.1	3.9	5.3	
	Piezomet	_c (B units)	8567.1	8390.3	8270.3	8774.6	8135.4	8744.8	8128.2	8328.8	8127.9	8199.3	8124.9	8758.8	8171.9	
	r 4	^ر (C) ا	6.4	6.3	6.3	6.9	6.4	6.4	6.1	6.2	6.1	6.6	6.5	6.8	6.1	
	Piezomete	; (B units) T	7774.8	7649.1	7564.2	7929.2	7482.4	7901.6	7498.3	7631.7	7484.7	7564.6	7509.9	7894.4	7531.6	
	. 3	° (°C) L	4.4	4.5	4.6	4.9	5.2	4.4	6.1	4.2	4.2	4.9	4.8	4.7	5.3	
	zometei	nits) T	9.6	7.4	9.5	4.4	7.3	7.7	0.8	8.5	6.3	3.2	5.5	2.0	0.8	
ck 12	Pie	L _c (B u	849	847	846	853	842	851	845	847	843	847	843	851	844	
Bloc	ter 2	T _c (°C)	4.8	4.9	5.0	5.0	5.4	4.7	6.2	4.2	4.2	4.9	4.9	4.8	5.4	
	Piezome	L _c (B units)	8506.8	8414.3	8333.4	8621.5	8258.1	8604.0	8316.2	8417.7	8305.7	8422.8	8391.0	8604.2	8420.2	
	er 1	T _c (°C)	5.4	5.7	5.9	4.1	5.8	4.7	7.9	3.5	3.7	3.9	3.9	3.2	6.0	
	Piezomete	L _c (B units)	8495.0	8291.7	8136.9	8671.0	7902.4	8690.0	7928.1	8315.5	7971.5	8005.0	7900.3	8619.4	7906.0	
3 _c (kPa)			95.83	96.81	96.13	101.40	101.00	97.40	97.00	97.92	97.42	97.50	97.50	102.60	101.50	
Thirsk Reservoir	Geodetic	Water Level (m)	1023.27	1025.74	1027.25	1019.80	1028.75	1020.35	1028.39	1024.30	1028.70	1027.70	1028.72	1019.62	1028.80	
Date			5/14/2009	5/21/2009	5/26/2009	3/24/2010	5/31/2010	5/5/2011	7/28/2011	4/27/2012	5/4/2012	4/12/2013	4/19/2013	3/18/2014	7/17/2014	

THIRSK DAM - VIBRATING WIRE PIEZOMETER RESULTS

P = pressure (in kPa) H_p = pressure head (in m) H = total head (in m) NOTE:

<u>Instructions:</u>
1) Highlight last set of results listed.
2) Drag down to update with current data and calculated pressure head and elevation head values for each piezometer. Note: you do not need to type in anything (the spreadsheet will automatically update results).
3) See graphs on 'Results - BLOCK 12' and 'Results - BLOCK 14'. These will now show the most

Date	Water Level				Bloc	k 12							Bloc	k 14			
	(m)	Piezon	neter 1	Piezon	neter 2	Piezon	neter 3	Piezor	meter 4	Piezon	neter 1	Piezon	neter 2	Piezon	neter 3	Piezor	neter 4
		H _p (m)	(m) H	H _p (m)	(m) H	H _p (m)	H (m)	H _p (m)	(m) H	H _p (m)	(ш) H	H _p (m)	H (m)	H _p (m)	(m) H	H _p (m)	H (m)
5/14/2009	1023.27	3.56	1021.26	4.14	1020.74	3.28	1017.88	9.33	1021.73	5.40	1021.00	1.60	1017.10	1.34	1014.04	7.05	1018.45
5/21/2009	1025.74	5.63	1023.33	5.03	1021.63	3.41	1018.01	10.51	1022.91	7.31	1022.91	1.65	1017.15	1.36	1014.06	7.56	1018.96
5/26/2009	1027.25	7.34	1025.04	5.97	1022.57	3.57	1018.17	11.44	1023.84	8.75	1024.35	1.72	1017.22	1.45	1014.15	7.97	1019.37
3/24/2010	1019.80	1.13	1018.83	2.33	1018.93	2.34	1016.94	7.20	1019.60	2.47	1018.07	1.02	1016.52	0.75	1013.45	5.85	1017.25
5/31/2010	1028.75	9.35	1027.05	6.28	1022.88	3.51	1018.11	11.77	1024.17	9.78	1025.38	1.25	1016.75	1.22	1013.92	8.06	1019.46
5/5/2011	1020.35	1.33	1019.03	2.93	1019.53	2.93	1017.53	7.89	1020.29	3.21	1018.81	1.42	1016.92	1.16	1013.86	6.38	1017.78
7/28/2011	1028.39	9.46	1027.16	6.05	1022.65	3.66	1018.26	12.02	1024.42	10.26	1025.86	1.74	1017.24	1.49	1014.19	8.34	1019.74
4/27/2012	1024.30	5.28	1022.98	4.89	1021.49	3.29	1017.89	10.57	1022.97	7.91	1023.51	1.50	1017.00	1.25	1013.95	7.49	1018.89
5/4/2012	1028.70	8.99	1026.69	6.15	1022.75	3.79	1018.39	12.11	1024.51	10.25	1025.85	1.57	1017.07	1.59	1014.29	8.37	1019.77
4/12/2013	1027.70	8.62	1026.32	4.87	1021.47	3.38	1017.98	11.29	1023.69	9.42	1025.02	1.28	1016.78	1.28	1013.98	7.91	1019.31
4/19/2013	1028.72	9.74	1027.44	5.21	1021.81	3.78	1018.38	11.85	1024.25	10.27	1025.87	1.35	1016.85	1.53	1014.23	8.32	1019.72
3/18/2014	1019.62	1.57	1019.27	2.40	1019.00	2.46	1017.06	7.43	1019.83	2.53	1018.13	0.71	1016.21	0.64	1013.34	5.92	1017.32
7/17/2014	1028.80	9.25	1026.95	4.48	1021.08	3.31	1017.91	11.22	1023.62	9.32	1024.92	0.97	1016.47	1.20	1013.90	7.91	1019.31

DATE

INITIAL

REVISIONS

DISTRICT OF SUMMERLAND	EXPANSION		
	DRAWING NUMBER	REV. NO.	SHEET
CONDULT ELEVATION & DETAILS - SHEET 2	2143-ABR-315E	3 1	

